Verifying a Semantic $\beta\eta$-Conversion Test for Martin-Löf Type Theory

Andreas Abel1
Thierry Coquand2 Peter Dybjer2

1Ludwig-Maximilians-University Munich
2Chalmers University of Technology

Workshop on Dependently Typed Programming
Nottingham, UK
19 February 2008
Building η into Definitional Equality

- Coq’s definitional equality is β ($+\iota$).
- The stronger definitional equality, the fewer the user has to revert to equality proofs.
- Why not η? ($f = \lambda x. f \times \text{if} \times \text{new}$)
- Validates, for instance, $f = \text{comp}\ f\ \text{id}$.
- But η complicates the meta theory.
- Twelf, Epigram, and Agda check for $\beta\eta$-convertibility.
- Twelf’s type-directed conversion check has been verified by Harper & Pfenning (2005).
- This work: towards verification of Epigram and Agda’s equality check.
Language

- Core type theory:
 - Dependent function types $\text{Fun } A \lambda x B$ ($= \Pi x : A. B$) with η.
 - Predicative universes $\text{Set}_0, \text{Set}_1, \ldots$
 - (Natural numbers — not in this talk).

- We handle large eliminations (types defined by cases and recursion), in contrast to Harper & Pfenning (2005).

- Scales to Σ types with surjective pairing.

- Goal: handle all types with at most one constructor ($\Pi, \Sigma, 1, 0$, singleton types).

- Not a goal?: handle enumeration types (2, disjoint sums, \ldots).
The Type Checking Task

- Input a sequence of typed definitions in \(\beta \)-normal form

\[
\begin{align*}
x_0 &: A_0 &= t_0 \\
& & \vdots \\
x_{n-1} &: A_{n-1} &= t_{n-1}
\end{align*}
\]

- Check the sequence in order
 1. check that \(A_i \) is well-formed
 2. evaluate \(A_i \) to \(X_i \) in current environment
 3. check that \(t_i \) is of type \(X_i \)
 4. evaluate \(t_i \) to \(d_i \) in current environment
 5. add binding \(x_i : X_i = d_i \) to environment

- Type conversion: need to check type values \(X, X' \) for equality
Values

- In implementation of type theory, values could be:
 1. Normal forms (Agda 2)
 2. Weak head normal forms (Constructive Engine, Pollack)
 3. Explicit substitutions (Twelf)
 4. Closures (Epigram 2)
 5. Virtual machine code (Coq, Grégoire & Leroy (2002))
 6. Compiled code (Cayenne, Dirk Kleeblatt)

- Abstract over implementation via applicative structures.
Applicative Structure

- Domain \mathcal{D} of values with 2 operations:
 1. Application $_ \cdot _ : \mathcal{D} \times \mathcal{D} \to \mathcal{D}$
 2. Evaluation $_ _ : \text{Exp} \times (\text{Var} \to \mathcal{D}) \to \mathcal{D}$.

- Laws:
 \[
 \begin{align*}
 c \rho &= c \quad \text{e.g. Fun, Set}_i \\
 x \rho &= \rho(x) \\
 (r s) \rho &= r \rho \cdot s \rho \\
 (\lambda x t) \rho \cdot d &= t(\rho, x = d)
 \end{align*}
 \]

- Variables $x_1, x_2 \in \mathcal{D}$ aka de Bruijn levels, generic values Coquand (1996).

- Neutral objects $x_i \cdot d_1 \cdot \ldots \cdot d_k$ are eliminations of variables aka atomic objects / accumulators.
Checking Type Equality

• Comparing type values

\[\Delta \vdash X = X' \uparrow \text{Set} \leadsto i \]
\[\Delta \vdash e = e' \downarrow X \]
\[\Delta \vdash d = d' \uparrow X \]

\[X \text{ and } X' \text{ are equal types at level } i \]
\[\text{neutral } e \text{ and } e' \text{ are equal, inferring type } X \]
\[d \text{ and } d' \text{ are equal, checked at type } X \]

• Roots:
 1. Setting of Coquand (1996)
 2. Type-directed η-equality of Harper & Pfenning (2005), extended to dependent types
 3. Implementations: Agdalight, Epigram 2
Algorithmic Equality

- **Type mode** $\Delta \vdash X = X' \uparrow \text{Set} \rightsquigarrow i$ (inputs: Δ, X, X', output: i or fail).

\[
\Delta \vdash \text{Set}_i = \text{Set}_i \uparrow \text{Set} \rightsquigarrow i + 1
\]

\[
\begin{align*}
\Delta \vdash X = X' \uparrow \text{Set} & \rightsquigarrow i \\
\Delta, x_\Delta : X \vdash F \cdot x_\Delta = F' \cdot x_\Delta \uparrow \text{Set} & \rightsquigarrow j \\
\hline
\Delta \vdash \text{Fun} X F = \text{Fun} X' F' \uparrow \text{Set} & \rightsquigarrow \max(i, j)
\end{align*}
\]

\[
\begin{align*}
\Delta \vdash E = E' \downarrow \text{Set}_i \\
\hline
\Delta \vdash E = E' \uparrow \text{Set} & \rightsquigarrow i
\end{align*}
\]

- **Arbitrary choice**: asymmetric.
Algorithmic Equality

Inference mode $\Delta \vdash e = e' \Downarrow X$ (inputs: Δ, e, e', output: X or fail).

$$
\begin{align*}
\Delta &\vdash x = x \Downarrow \Delta(x) \\
\Delta &\vdash e = e' \Downarrow \text{Fun } X F \\
\Delta &\vdash d = d' \Uparrow X
\end{align*}
$$

Checking mode $\Delta \vdash d = d' \Uparrow X$ (inputs: Δ, d, d', X, output: succeed or fail).

$$
\begin{align*}
\Delta &\vdash e = e' \Downarrow E_1 \\
\Delta &\vdash E_1 = E_2 \Downarrow \text{Set}_i \\
\Delta &\vdash e = e' \Uparrow E_2 \\
\Delta, x_\Delta : X &\vdash f \cdot x_\Delta = f' \cdot x_\Delta \Uparrow F \cdot x_\Delta \\
\Delta &\vdash f = f' \Uparrow \text{Fun } X F \\
\Delta &\vdash X = X' \Uparrow \text{Set } \sim i \\
i \leq j
\end{align*}
$$
Towards a Kripke model

- Completeness of algorithmic equality usually established via Kripke logical relation (*semantic equality*)

\[\Delta \vdash d = d' : X \]

- At base type \(X \) this could be defined as \(\Delta \vdash d = d' \uparrow X \).
- Should model declarative judgements.
- Problem: transitivity of algorithmic equality non-trivial because of asymmetries.
- Solution: two objects at base type shall be equal if they reify to the same term.
Contextual reification

- Reification converts values to η-long β-normal forms.
- Reification of neutral objects $x \vec{d}$ involves reification of arguments d_i at their types.
- Thus, must be parameterized by context Δ and type X.
- Structure similar to algorithmic equality.

\[
\begin{align*}
\Delta \vdash X \downarrow A \uparrow \text{Set} \rightsquigarrow i \\
\Delta \vdash e \downarrow u \downarrow X \\
\Delta \vdash d \downarrow t \uparrow X
\end{align*}
\]

- Reification of functions (η-expansion):

\[
\begin{align*}
\Delta, x:X \vdash f \cdot x \downarrow t \uparrow F \cdot x \\
\Delta \vdash f \downarrow \lambda xt \uparrow \text{Fun } X F
\end{align*}
\]
Completeness

- Objects that reify to the same term are algorithmically equal.

Lemma

If $\Delta \vdash d \downarrow t \uparrow X$ *and* $\Delta' \vdash d' \downarrow t \uparrow X'$ *then* $\Delta \vdash d = d' \uparrow X$.

- Kripke logical relation between objects in a semantic typing environment.
 - for base types: $\Delta \vdash d : X \subseteq \Delta' \vdash d' : X'$ *iff* $\Delta \vdash d \downarrow t \uparrow X$ *and* $\Delta' \vdash d' \downarrow t \uparrow X'$ *for some* t,
 - for function types: $\Delta \vdash f : Fun X F \subseteq \Delta' \vdash f' : Fun X' F'$ *iff* $\hat{\Delta} \vdash d : X \subseteq \hat{\Delta}' \vdash d' : X'$ *implies* $\hat{\Delta} \vdash f \cdot d : F \cdot d \subseteq \hat{\Delta}' \vdash f' \cdot d' : F' \cdot d'$.

- Symmetric and transitive by construction.

- Semantic equality $\Delta \vdash d = d' : X$ *iff* $\Delta \vdash d : X \subseteq \Delta \vdash d' : X$.
Validity

- Define $\Delta \vdash \rho = \rho' : \Gamma$ iff $\Delta \vdash \rho(x) = \rho'(x) : \Gamma(x)$ for all x.

Theorem (Fundamental theorem)

If $\Gamma \vdash t = t' : A$ and $\Delta \vdash \rho = \rho' : \Gamma$ then $\Delta \vdash t\rho = t'\rho' : A\rho$.

- Implies completeness of algorithmic equality.
Soundness

- Easy for algorithmic equality defined on *terms*.
- Uses substitution principle for declarative judgements.
- Substitution principle fails for algorithmic equality.

\[
\Delta, x_\Delta : X \vdash f \cdot x_\Delta = f' \cdot x_\Delta \uparrow F \cdot x_\Delta \\
\Delta \vdash f = f' \uparrow \text{Fun } X F
\]

- But it should hold for all values that come from syntax.
- Need to strengthen our notion of semantic equality by incorporating substitutions (Coquand et al., 2005).
Strong Semantic Equality

- Equip D with reevaluation $d\rho \in D$.
- Define **strong semantic equality** by

 $$\Theta \models d = d' : X \iff \forall \Delta \vdash \rho = \rho' : \Theta. \Delta \vdash d\rho = d'\rho' : X\rho$$

- Algorithmic equality is sound for strong semantic equality.
- Strong semantic equality models declarative judgements.
Logical Relation between Syntax and Semantics

Theorem (Soundness)

If $\Gamma \vdash t, t' : A$ and $\Gamma \vdash t \rho_{id} = t' \rho_{id} \uparrow A \rho_{id}$ then $\Gamma \vdash t = t' : A$.

Proof.

Define a Kripke logical relation $\Gamma \vdash t : A \circ \Delta \vdash d : X$ between syntax and semantics.

For base types X, it holds if $\Delta \vdash d \downarrow t' \uparrow X$ and $\Gamma \vdash t = t' : A$.

☐
Conclusions

- Verified $\beta\eta$-conversion test which scales to universes and large eliminations.
- Has been on my mind for a couple of years (Frank, Thierry).
- Necessary tools came from Normalization-by-Evaluation.
- From the distance: algorithm is β-evaluation followed by η-expansion. Does not scale to singleton types.
- Flaw: reevaluation not definable for reflexive domains D.
- Future work: fix soundness proof.
Related Work

- Martin-Löf 1975: NbE for Type Theory (weak conversion)
- Martin-Löf 2004: Talk on NbE (philosophical justification)
- Altenkirch Hofmann Streicher 1996: NbE for λ-free System F
- Gregoire Leroy 2002: β-normalization by compilation for CIC
- Coquand Pollack Takeyama 2003: LF with singleton types
- Danielsson 2006: strongly typed NbE for LF
- Altenkirch Chapman 2007: big step normalization
Strong Validity

Define $\Delta \models \rho = \rho' : \Gamma$ iff $\Delta \models \rho(x) = \rho'(x) : \Gamma(x)$ for all x.

Theorem (Fundamental theorem)

If $\Gamma \vdash t = t' : A$ and $\Delta \models \rho = \rho' : \Gamma$ then $\Delta \models t\rho = t'\rho' : A\rho$.

Implies completeness of algorithmic equality.

