Supporting the Development of Dependently Typed Functional Programs

Sean Wilson
CISA, School of Informatics, The University of Edinburgh
sean.wilson@ed.ac.uk
Overview

• Programming with expressive dependent types can require the user and/or typechecker to construct proofs.

• We are developing generic proof automation to support programming with user defined inductive data types. We aim to support program properties relating to, for instance, non-linear arithmetic, permutations, membership and ordering.

• Using Coq/Russell as our programming environment, we are integrating a rippling tactic along with existing ones to automatically discharge proof obligations to make programming with dependent types easier.
Rippling

- As discharging Russell proof obligations can involve induction, rippling, a successful heuristic method for automating induction-like proofs, seems applicable.

- Basic idea: modify the conclusion to reduce its differences compared to a target term T, so T can be used. T is typically the inductive hypothesis in an inductive proof e.g.

 \[
 \text{Target: } \quad x + 1 = 1 + x
 \]

 \[
 \text{Conclusion: } \quad S(x + 1) = 1 + Sx
 \]

 Colour indicates differences

 \[
 \text{Differences are “rippled out”}
 \]

 \[
 S(1 + x) = 1 + Sx
 \]

 Fertilisation can then occur
Rippling/Generalisation

- Rippling guides induction variable/scheme choice, case splitting and lemma speculation.

- When fertilisation succeeds, generalising the goal and performing induction again (lemma calculation) is common.

- Generalisation is also helpful before we start induction on some proof obligations. This is common for proof obligations generated from the use of subset types.
Example: Rippling Applications

A list reversal function that admits it returns a permutation of its input:

Program Fixpoint count (a : list A) (x : A) : nat :=
match a with
 nil => 0
| h :: t => if A_eq_dec h x then S (count t x) else (count t x)
end.

Program Fixpoint reverse (a : list A) :
 {o:list A | forall x, count a x = count o x} :=
match a with
 nil => nil
| h::t => (reverse t)++(h::nil)
end.
Example: Rippling Applications

The recursive call of reverse generates this proof obligation:

\[
\begin{align*}
& h : A \\
& t : \text{list } A \\
& x : A \\
& x0 : \text{list } A \\
& e : \text{forall } x : A, \text{ count } t \ x = \text{ count } x0 \ x \\
& \text{--} \\
& \text{count } (h :: t) \ x = \text{count } (x0 :: h :: \text{nil}) \ x
\end{align*}
\]

Rippling can be used to guide the proof as \(e \) is structurally similar to the conclusion.

After fertilisation and basic simplification, the following subgoals can be proven with induction and rippling:

\[
\begin{align*}
& S \ (\text{count } x0 \ x) = \text{count } (x0 :: x :: \text{nil}) \ x \\
& h <> x \rightarrow \text{ count } x0 \ x = \text{count } (x0 :: h :: \text{nil}) \ x
\end{align*}
\]
Example: Generalisation and Rippling Applications

A queue implementation with a function that admits items are queued in the intended order:

Definition queue := prod (list A) (list A).
Definition queue_to_list (q : queue) := (fst q) ++ (rev (snd q)).

Program Definition append_queue (a:queue) (b:queue):
{o:queue | queue_to_list o = queue_to_list a ++ queue_to_list b} :=
(fst a, (rev (queue_to_list b)) ++ (snd a)).

This generates the following proof obligation:
forall w x y z, x ++ rev (rev (w ++ rev y) ++ z) =
(x ++ rev z) ++ w ++ rev y

We can generalise the common subterm w ++ rev y to give:
forall x z g, x ++ rev (rev g ++ z) = (x ++ rev z) ++ g

We can then guide the inductive proof with rippling.
Developent Status

- A rippling out and common subterm generalisation tactic has been implemented.

- These have been integrated into a top-level tactic that recursively performs induction, rippling and generalisation.

- Can automatically produce proofs of many theorems involving Peano arithmetic and list functions e.g.

\[
\begin{align*}
\text{forall } l \ m \ n, \ (l \ ++ \ m) \ ++ \ n &= l \ ++ \ m \ ++ \ n. \\
\text{forall } x \ y, \ \text{rev} \ (x \ ++ \ y) &= \text{rev} \ y \ ++ \ \text{rev} \ x. \\
\text{forall } x, \ \text{rev} \ (\text{rev} \ x) &= x. \\
\text{forall } n \ m, \ m \ * \ n &= n \ * \ m. \\
\text{forall } m \ n \ k, \ (m \ + \ n) \ * \ k &= (m \ * \ k) \ + \ (n \ * \ k). \\
\text{forall } x \ n \ m, \ x^{(n+m)} &= x^n \ * \ x^m.
\end{align*}
\]
Future Work

- Continue rippling development: lemma speculation, allowing several target terms, exploiting universally quantified assumptions.

- Explore better generalisation algorithms and the use of counterexample checking.

- Evaluate the power of the proof automation.

- Explore how to provide useful feedback for programs that do not respect their typing.
Thanks for listening!