
Matching regular expressions,
revisited, (revisited) �

James McKinna, University of St.Andrews

james.mckinna@st-andrews.ac.uk

FUN in Nottingham, February 23, 2007

Last minute GADT hacking: Edwin Brady

Thanks to: Conor, Graham, and Jeremy



The ur -problem

Prove that the language recognition problem for regular grammars is

decidable

JHM: FUN 2007-02-21 Slide 1



This should work. . .

You want decidable? Write a boolean valued function!

/* accept : RegExp -> String -> bool */

fun accept r s = acccps r (String.explode s) (fn Nil => true | => false)

/* acccps : RegExp -> char list -> (char list -> bool) -> bool */

fun acccps (RE0) cs k = false

| acccps (RE1) cs k = k cs

| acccps (REchar a) Nil k = false

| acccps (REchar a) (c :: cs) k = if (a = c) then k cs else false

| acccps (REplus r1 r2) cs k = acccps r1 cs k orelse (acccps r2 k cs)

| acccps (REtimes r1 r2) cs k = acccps r1 cs (fn cs’ => acccps r2 cs’ k)

| acccps (r as (REstar r1)) cs k = k cs orelse acccps r1 cs (fn cs’ => acccps r cs’ k)

Problem This function is not total . Why?

JHM: FUN 2007-02-21 Slide 2



The ur -specification

Imagine a programming language whose type system is expressive

enough to allow one to write down, as a datatype, the type of:

“successful partial matches of a string � �� against a regexp� ,

exhibited as a parse tree � � � � � � , plus a suffix string � , such

that � � � � 	 
� � 
 	 � � ”

where 	 
 � � 
 	 � � is the obvious flattening observation on the ADT of

parse trees � , displaying them as strings.

JHM: FUN 2007-02-21 Slide 3



String recognition with regexps (sketch): typing the
recogniser

Consider the inductive family � 
� � � � � of partially successful matches

with constructor
� � � � � � � � �� 	� � ��

� � � �	 
 
 � � � � 
� � � � � 	 
 � � 
 	 � � �

which captures successful parsing of an initial segment of the input string.

Then a plausible typing for a recogniser is

� � � � � � � � �� 	� � ��

	 
� � � � � � � 
� � � � �

JHM: FUN 2007-02-21 Slide 4



I: Introduction



Harper (JFP, 1999): “proof-directed debugging”

A Lakatos-style “failed proof” analysis, with repair, of:

� a continuation-passing style regexp matcher in SML

� partial correctness: tricky informal inductive argument, assuming

inductively that continuations involved terminate: “validity”

� termination: fails for matching against ���

� repair:

– eliminate null transitions: compute � � � � � � ���
– put� in standard form: � � � � � � � � 	

� termination secured for � �� and regexps of the form� 	

JHM: FUN 2007-02-21 Slide 5



Harper’s broken matcher

/* accept : RegExp -> String -> bool */

fun accept r s = acccps r (String.explode s) (fn Nil => true | => false)

/* acccps : RegExp -> char list -> (char list -> bool) -> bool */

fun acccps (RE0) cs k = false

| acccps (RE1) cs k = k cs

| acccps (REchar a) Nil k = false

| acccps (REchar a) (c :: cs) k = if (a = c) then k cs else false

| acccps (REplus r1 r2) cs k = acccps r1 cs k orelse (acccps r2 k cs)

| acccps (REtimes r1 r2) cs k = acccps r1 cs (fn cs’ => acccps r2 cs’ k)

| acccps (r as (REstar r1)) cs k = k cs orelse acccps r1 cs (fn cs’ => acccps r cs’ k)

This function is not structural recursive because of the highlighted

recursive call on acccps, and there is no guarantee that any of the string

will have been consumed at that point.

JHM: FUN 2007-02-21 Slide 6



A natural candidate for formalisation?

� Tricky inductive correctness argument

� Need to analyse possible non-termination of SML programs

� Re-frame the problem!

– Work in a theory of terminating functions (EPIGRAM)

– Proof by induction, definition by structural recursion

– Distinguish types of regexps, resp. those in standard form; a view

(Wadler (1987); McBride/McKinna (2004))

– Matching can itself also be expressed as a view (of Strings)

– Correctness evident by type (Curry-Howard as usual)

– Lose CPS; recover direct-style matcher (continuations in the tail)

JHM: FUN 2007-02-21 Slide 7



end of part I



II: Regular expressions and
regular languages



Why dependent types matter

Our treatment makes use of dependent types to represent, in a uniform

framework,

� the language sets � � � � for a given regexp� ;

� the function rendering each � � � � � � as a string;

� derivation trees � � � � � axiomatising the inclusion � � � �� � � � � ;

� the mapping � � � � � � � � � ��� � � � � , together with � � � � � (which

witnesses this inclusion), the proof that � � � � � preserves renderings;

in other words, the syntax, semantics and proof theory of regular

languages.

JHM: FUN 2007-02-21 Slide 8



The type of regular expressions

�� � ,

� defined over an alphabet� ,

� is definable as usual, with

– � ,

– � ,

– characters � ,

– alternation� � � ,

– composition� � � ,

– and repetition (Kleene star)� � ; iteration,� � � � � � �

JHM: FUN 2007-02-21 Slide 9



The inductive family of language sets

We do not define � � � � directly as sets of strings, but as abstract syntax

trees for successful parses of such strings:

data � � � � �

� � � � � �

where � � �
where

� � � �� �

� � �

� � � � � � � �

� � � � � � � � � � � � �

� �
� � � � � � � �

� � � � � �

� � � � � � � � � � �

� � � � � �

	 � � � � � � � � � �

� � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � �

NB. � � � � is an empty type: no constructor is declared for it.

JHM: FUN 2007-02-21 Slide 10



Alternatively: a recursive definition

let � � �� �

� � � � � �

� � � � � �

� �� � � �

� � � � � � � �

� � � � � � � � � � ��� � � � �

� � � � � � � � � � ��� � � � �

� � � � � � � � �� � � � � � �

JHM: FUN 2007-02-21 Slide 11



Rendering parse trees as strings: obvious fusion

let � � � � � � � � � � � �� 	� � � �

	 
� � 
 	 � � � � � �� 	� � � �

	 
 � � 
 	 � � �� � � ��

	 
 � � 
 	 �� � � � � � � 	 
� � � � ��

	 
 � � 
 	 � � �
� � � � � � 	 
 � � 
 	 � � 	 
 � � 
 	 � � � � �

	 
 � � 
 	 � � � � � � � �� � 	 
� � 
 	 � � � �

	 
 � � 
 	 � 	 � � � � � � � � 	 
 � � 
 	 � � ��

	 
 � � 
 	 � � �� � � ��

	 
 � � 
 	 � � � � � � � � � 	 
 � � 
 	 � � 	 
 � � 
 	 � � � � �

JHM: FUN 2007-02-21 Slide 12



An obvious ’fusion’ lemma

exercise: prove the following

	 
 � � 
 	 � � � � � � � � 
 � � � 	 
 � � 
 	 � � � � � ��

with � � the null string, and string concatenation � � � 
� � as usual.

JHM: FUN 2007-02-21 Slide 13



Standard form regular expressions

The crux of the termination argument:

� identify the sublanguage of expressions � � � �� �

� such that their parse trees � � � � � � render as non-empty strings.

� (matching against such an � is guaranteed to terminate, by

well-founded induction on string suffixes, using the fusion lemma)

data � � �

� � � � � �

where � � � �� �

� � �

� � � �� �

� � �

� � ��� � � �� �

� � ��� � � � � �

� � ��� � � �� �

� � � � � � �� �

� � � � � �

� � � � �� �
JHM: FUN 2007-02-21 Slide 14



Standardising regular expressions: the theorem

� An obvious erasure from � �� � to �� � ,

�
�

�

� re-presentation of Harper’s analysis by proving the following normal

form theorem for regexps: every� � �� � is equivalent to either

–

�
�

�

for � � � �� � , or

– � �
�

�
�

for � � � �� �

� ‘equivalent’ here means: generates the same strings via 	 
 � � 
 	
JHM: FUN 2007-02-21 Slide 15



Standardising regular expressions: the function

� the two cases of the theorem correspond to two constructors of a type

family, �� � � , (the cases where � ��� � � � , � �� � � � in Harper)

� data � � �� �

�� � � � �

where

� � � �� � � �
�

�
�

� �

�� � � � � �� �
�

�
�

� � � �� � � � � �
�

�
�

� �

�� � � � � � �� � �

� the theorem is witnessed by a function of type

� � � � �

�� � � � �� � �

� incl. all the machinery behind� � � ��� � � �
	

JHM: FUN 2007-02-21 Slide 16



Axiomatising the equational theory of regular
expressions

� � � � is (a fragment of) the familar equational theory of Kleene

algebra (semantically, “ � � � � � � � � � ”)

� technically easier to mix the equational and inequational theory,

capturing “� � � � ” as well: just another inductive family. . .

� crucial soundness lemma: if� � � � , then � � � � � � � � � �

� this lemma becomes a function, factorised as

– a mapping � � � � � � � � � � � � � � � � ; defined by structural induction

over � � � � � � , respectively � � � � � � ;

– a proof � � � � � that 	 
 � � 
 	 � � � � � � � � � �� � 	 
 � � 
 	 � � � � ;

JHM: FUN 2007-02-21 Slide 17



end of part II



III: Writing the matcher



Specifying the matcher

� The problem of (partial) matching a given string � �� against a regexp

� is then to construct

– a parse tree � � � � � � and

– a suffix � ���

– such that � � � � 	 
 � � 
 	 � � � � ,

that is, to invert the rendering function.

� The classical recognition problem � �� � � � � � � then reduces to the

problem of testing whether the suffix � � � � � �

JHM: FUN 2007-02-21 Slide 18



Specifying the family

data
� � �� � � � � � � �� 	� � � �

� 
� � � � � � � � �

where � � � � � � � � � � � �� 	� � � �

� � � �	 
 
 � � ��� � � 
� � � � � 	 
 � � 
 	 � � ��� �

� � � 	 	 �


 	 	 � � � 
� � � � �

� Writing a recogniser then amounts to writing a function 	 
� � � of type

� � � � � � � � � � �� 	� � � � � � 
� � � � �

� Non-dependent elimination (the technique of views) over the family

� 
� � � � � exposes � so as to invert 	 
� � 
 	

JHM: FUN 2007-02-21 Slide 19



CPS revisited: why partial matching matters

� when attempting to match � �� against a composition� � � , we can

recursively match the suffix � ��� against �

� what holds this together is that the corresponding result types match

up, because for � � � � � � � � � � � � � we have as a definitional equality

	 
 � � 
 	 � � �
� � � ��� � 	 
� � 
 	 � � 	 
 � � 
 	 � � ��� � �

� similar considerations apply when matching against� � etc.

� as in Wand’s influential analysis, the suffix strings encode, as usual,

the continuation of the computation

JHM: FUN 2007-02-21 Slide 20



The recogniser

� We define the recogniser as a function 	 
� � � , declared with signature

let
� � �� � � � � � � �� 	� � � �

	 
� � � � � �� � � 
� � � � � � �

� 	 
� � � � � �� is computed as follows:

– standardise� , yielding � � � �� � , a constructor tag indicating

whether� recognises � , and a proof � � � � � ;

– match using a specialised recogniser � 	 
� � � , declared with

signature let

� � � �� � � �� � �� 	� � � �

� 	 
� � � � � � � � � 
� � � �
�

�

� � �

– use the proof � � � � � to fix up the types!

JHM: FUN 2007-02-21 Slide 21



The specialised recogniser

Matching a specialised recogniser � 	 
� � � , declared with signature

let

� � � �� � � �� � �� 	� � � �

� 	 
� � � � � �� � � 
� � � �
�

�

� � � does the obvious thing:

� fail on �

� on � : succeed if the head character is matched; fail otherwise

� on � : try to match the left, try the right if you fail

� on � : try to match an initial segment, continue with the tail

� on � � : try to match one copy of � . . . once you fail, return the suffix and

figure out if you have succeeded or failed!

Termination relies on the fact that you must consume tokens at each

success step which gives rise to a recursive call

JHM: FUN 2007-02-21 Slide 22



end of part III



Conclusions

� relativisation to a given� makes � � � � , and 	 
 � � 
 	 , evidently “correct”

� (category-theoretic) treatment of Kleene algebra: � � � is a functor

� Harper-Sethi/Berry-McNaughton/Yamada normalisation to � �� �

� well-founded recursion on suffices secures termination for regexps in

standard form

� the� � � �	 
 
 constructor encodes, direct-style, (the continuation on)

the suffix of the string, having successfully parsed a prefix of the string

� the matcher is itself, evidently “correct” by virtue of its type

JHM: FUN 2007-02-21 Slide 23



Anti-Conclusions

� the eventual program

– has a very high ‘deBruijn ratio’ compared to Harper’s original

– still isn’t entirely finished. . . oops!

– is harder to understand, . . . or is it?

� OTT might help hide all the � � � � � equational reasoning in types

JHM: FUN 2007-02-21 Slide 24



Questions?



Dependent families of types [Martin-Löf 1971]

� The key device we exploit to achieve this is the idea of a

dependent family of types � �

a function on type � � � which returns types � � � � given � � � .

� allow arbitrary � as the domain of variation (not just � itself)

� then � behaves like a predicate on �

� quantification � ,� given by type constructors � ,� . . . so we have

typed programs and logic with explicit proofs

� an important class of datatypes arise by considering

inductively-defined � [Dybjer 1991].

JHM: FUN 2007-02-21 Slide 25



A uniform generalisation of GADTs and related notions

the spectrum of possible instances ��� � occurring in source and target

types of term constructors and functions:

Hindley-Milner

� � can be type variables only; uniform choice over all

constructors of a datatype; function instances � � � similarly uniform

polymorphic recursion non-uniform instances in source types for

constructors, on a per-constructor basis

GADTs non-uniform instances in source and target types:

� � may be

arbitrary type expressions (necessarily in type-constructor form; no

type-level functions)

� mega

� � may be arbitrary type expressions (not necessarily in

type-constructor form)

JHM: FUN 2007-02-21 Slide 26



Inductive Families

� Dybjer’s families:
� � may be term expressions (not necessarily types!)

� can consider further stratifications of this idea

– only consider

� � to be variables (Cayenne)

– . . . to be constructor form patterns

– arbitrary expressions

� EPIGRAM makes the last, most permissive choice

� NB. these types are not ascribed to untyped terms

� they prescribe, and/or describe very rich properties

� don’t understand data or computations independently of their types

� give up all partial recursive functions. . .

JHM: FUN 2007-02-21 Slide 27



Phase distinction: the event horizon for type systems

There seems to be a fundamental problem with keeping static and

dynamic layers apart:

you cannot say that the thing you construct is

*related* to the input you started with

For others, there seems to be a fundamental problem with mixing static

and dynamic layers:

types might (have to) get passed at run-time

JHM: FUN 2007-02-21 Slide 28


