Generics in Small Doses

Adam T. Sampson Neil C. C. Brown

Computing Laboratory, University of Kent

Fun in the Afternoon, November 2008

University of

Kent

A

\ ~
Computing

Overview

m Tock, our application

m Why generic programming?

m What’s wrong with the existing generics systems?
m What we’ve done to fix them

University of

Kent

A

\ ~
Computing

Introduction

m A compiler for concurrent imperative programming
languages
m Written in Haskell
m Lots of expertise here, and good for student projects
m Many existing compilers in Haskell

m Uses a nanopass approach

University of

Kent

A

\ ~
Computing

Introduction

Nanopass compilation (Sarkar et al., 2004)

m Build a compiler as lots of little passes, each of which does
one thing to the AST
m Various types of passes:
Simplifications e.g. “remove multiple assignment”
Restructurings e.g. “group variable definitions”
Annotations e.g. “mark parallel usage of channels”
Checks type-checking, internal consistency

m Easier to write, extend, test. .. and teach

University of

Kent

A

\ ~
Computing

Introduction

ure of Tock

occam
parser

Rain
parser

source

(about 60 passes) backend

A

University of

Kent

\ ~
Computing

Introduction

Representing the AST

m Tock’s AST is quite complex, since it needs to represent all
the intermediate stages too

m Other nanopass toolkits are in dynamic languages. . .
m We use algebraic data types
m 37 data types, 160+ constructors

data Process = Seq [Process]
| Assign [(Variable, Expression)]
| ...
data Expression = DyadicOp Op Expression Expression
| ExprVariable Variable

| ...
data Variable = Variable String

A

University of

Kent

\ ~
Computing

The problem

Writing passes

m A pass is a function from AST to AST

m For example, let’s write a pass that converts
occam.style.names t0 c_style_names

cStyleNames :: AST —> AST
cStyleNames = . . .
where
doName : : Name -> Name
doName (Name s)
=Name [ifc=="." then’ ’ elsec | ¢ <-s]

m How do we apply doName to all the Names in the AST?
University of

Kent

A

\ ~
Computing

The problem

Generics

m This is a job for a generic programming toolkit

m A generics system will let you take type-specific functions,
and apply them wherever they match inside a more
complex data structure

m i.e. turn a type-specific function into a generic function
m There are many existing generics systems for Haskell. ..

A

University of

Kent

\ ~
Computing

The problem

Scrap Your Boilerplate (Lammel/Peyton-Jones, 2003)

cStyleNames : : AST —> AST
cStyleNames = everywhere (mkT doName)

m We started out using SYB, because it’s included with GHC
as Data. Generics

m It’s pretty easy to use, and lets you easily build custom
traversals
m Unfortunately, it’s very slow:

m It works by runtime type introspection
m lIts traversals don’t do any pruning, so it'll look at every Char
of every String to see if it's a Name

A

University of

Kent

\ ~
Computing

The problem

Uniplate (Mitchell/Runciman, 2007)

cStyleNames :: AST -> AST
cStyleNames = transform doName

m Designed for compiler applications
m Provides a wide variety of ready-made traversal functions
m Works using a primitive defined in a typeclass
class Biplate outer inner where
biplate :: outer —> ([inner], [inner] —> outer)
m biplate lets you operate upon the biggest inners in an outer
m From this, you can build all the higher-level operations
m Much faster — no runtime typing

A

University of

Kent

\ ~
Computing

The problem

So why not just use Uniplate?

m Uniplate doesn’t support generic operations with more
than one target type
m e.g. matching Processes and Expressions

m This is a problem for us — we have several passes that
need to do this

m Can we extend the Biplate primitive to support multiple
target types?
m Yes: we've called it Polyplate

A

University of

Kent

\ ~
Computing

Polyplate

Operation sets

m We need to be able to build sets of type-specific functions
(“operations”)

m ...and we need to be able to parameterise a typeclass
over the type of a set of operations

m So we use a standard type-level programming trick. . .
m The empty set of operations is the unit type:

type BaseOp = ()

baseOp : : BaseOp
baseOp = ()

University of

Kent

A

\ ~
Computing

Polyplate

Operation sets

m We then add type-specific functions to the set by nesting
tuples:

type Transformt =1t —>t
type ExtOp op t = (Transform t, op)

extOp :: op —> Transform t —> ExtOp op t
extOp ops f = (f, ops)

A

University of

Kent

\ ~
Computing

Polyplate

Operation sets

m There’s a nice symmetry between the functions used to
build an operation set and its type

m Here’s an operation set with type-specific functions for
Process and Expression

myOp : : BaseOp ExtOp " Process ‘ExtOp* Expression
myOp = baseOp ‘extOp* doProcess ‘extOp* doExpression

(in practice the type can usually be inferred)

A

University of

Kent

\ ~
Computing

Polyplate

The Polyplate typeclass

class Polyplate ops tops t where
polyplate :: ops —> tops —> Bool —> t —> t

m polyplate applies the type-specific functions in its operation
set to the largest subtrees of the appropriate types within a
value of type t

m If no functions match, it behaves like the identity function
m It takes two sets of operations:
m ops to apply to the current value;
m tops to apply to children of the value when recursing into it
m I'll come back to the Bool flag in a minute; for now we’ll just
pass it through

A

University of

Kent

\ ~
Computing

Polyplate

An example data type

m We’'ll use the following pair of data types for our examples:

data Outer = Foo Inner | Bar
data Inner = Baz | Quux

m The constructors here aren’t really important, but. ..
m Note that Outer can contain an Inner, but not vice versa

A

University of

Kent

\ ~
Computing

Polyplate

Polyplate instances: “hits”

m When the set is not empty, and the outermost type-specific
function in the set can be applied to the value type, we

simply apply it:

instance Polyplate (Transform Inner, r) tops Inner where
polyplate (f,) __v=fv

instance Polyplate (Transform Outer, r) tops Outer where
polyplate (f,) __v=fv

A

University of

Kent

\ ~
Computing

Polyplate

Polyplate instances: “misses”

m When the set is not empty, and the outermost type-specific
function cannot be applied to the value type, then we
recurse to try the next function in the set:

instance Polyplate r tops Inner =>
Polyplate (Transform Outer, r) tops Inner where
polyplate (_, rest) topOps b v
= polyplate rest topOps b v

m The recursion in the typeclass constraint matches the
recursion in the function itself

A

University of

Kent

\ ~
Computing

Polyplate

Pruning

class Polyplate ops tops t where
polyplate :: ops —> tops —> Bool —> t —> t

m What's that Bool for?
m It's the descent flag
m |t starts off as False

m If it becomes True while we're trying to apply our functions,
then the value type t might contain one of the target types

m We use this to limit our traversal to only the values that
might contain the things we’re looking for

A

University of

Kent

\ ~
Computing

Polyplate

Polyplate instances: “throughs”

m ...except in the case where we know that the value type
might contain values of the type that the type-specific
function is looking for — then we do the same, but we also
force the descent flag to True:

instance Polyplate r tops Inner =>
Polyplate (Transform Inner, r) tops Outer where
polyplate (_, rest) topOps b v
= polyplate rest topOps True v

A

University of

Kent

\ ~
Computing

Polyplate

Polyplate instances: non-trivial empty sets

m When the set of operations is empty, we know we haven’t
applied any type-specific functions to the current value

m We have to look at the descent flag

m If it's False, none of the types we're looking for can be
contained inside this value; we can just return it
m If it's True, we have to apply polyplate recursively to the
children of the value
m ...setting the descent flag back to False

instance Polyplate tops tops Inner =>
Polyplate () tops Outer where
polyplate () _Falsev =v
polyplate () topOps True (Foo i)
= let i’ = polyplate topOps topOps False i

A

University of

in Foo i’
polyplate () _ True Bar = Bar K_‘-"nt

\ ~
Computing

Polyplate

Polyplate instances: trivial empty sets

m If the set of operations is empty and the value type has no
children, we can just return it:

instance Polyplate () tops Inner where
polyplate () __v=v

University of

Kent

A

\ ~
Computing

Conclusions

Downsides

m You need lots of instances of Polyplate — n(n — 1) where n
is the number of types you want to handle

m Fortunately, we can derive them automatically

m We use SYB’s runtime typing to detect which types can
contain other types, then generate instance code

m You also need more typeclass constraints on functions
using these operations than with SYB

m It takes a very long time to compile Polyplate code with
GHC...

A

University of

Kent

\ ~
Computing

Conclusions

In summary. ..

m We've shown how the Uniplate approach to generics can
be extended to allow operations involving multiple types

m This lets us replace SYB — which significantly speeds up
our compiler

m |'ve been glossing over a lot here: ask me for the paper for
the full details

m For example, all the transformations are actually
monadic. ..

m Any questions?

A

University of

Kent

\ ~
Computing

	Introduction
	The problem
	Polyplate
	Conclusions

