
Generics in Small Doses

Adam T. Sampson Neil C. C. Brown

Computing Laboratory, University of Kent

Fun in the Afternoon, November 2008

Overview

Tock, our application
Why generic programming?
What’s wrong with the existing generics systems?
What we’ve done to fix them

Introduction

Tock

A compiler for concurrent imperative programming
languages
Written in Haskell

Lots of expertise here, and good for student projects
Many existing compilers in Haskell

Uses a nanopass approach

Introduction

Nanopass compilation (Sarkar et al., 2004)

Build a compiler as lots of little passes, each of which does
one thing to the AST
Various types of passes:
Simplifications e.g. “remove multiple assignment”
Restructurings e.g. “group variable definitions”
Annotations e.g. “mark parallel usage of channels”
Checks type-checking, internal consistency

Easier to write, extend, test. . . and teach

Introduction

Structure of Tock

Introduction

Representing the AST

Tock’s AST is quite complex, since it needs to represent all
the intermediate stages too

Other nanopass toolkits are in dynamic languages. . .
We use algebraic data types

37 data types, 160+ constructors

data Process = Seq [Process]
| Assign [(Variable, Expression)]
| ...

data Expression = DyadicOp Op Expression Expression
| ExprVariable Variable
| ...

data Variable = Variable String
...

The problem

Writing passes

A pass is a function from AST to AST

For example, let’s write a pass that converts
occam.style.names to c_style_names

cStyleNames :: AST -> AST
cStyleNames = ...

where
doName :: Name -> Name
doName (Name s)
= Name [if c == ’.’ then ’_’ else c | c <- s]

How do we apply doName to all the Names in the AST?

The problem

Generics

This is a job for a generic programming toolkit
A generics system will let you take type-specific functions,
and apply them wherever they match inside a more
complex data structure

i.e. turn a type-specific function into a generic function

There are many existing generics systems for Haskell. . .

The problem

Scrap Your Boilerplate (Lämmel/Peyton-Jones, 2003)

cStyleNames :: AST -> AST
cStyleNames = everywhere (mkT doName)

We started out using SYB, because it’s included with GHC
as Data.Generics

It’s pretty easy to use, and lets you easily build custom
traversals
Unfortunately, it’s very slow:

It works by runtime type introspection
Its traversals don’t do any pruning, so it’ll look at every Char
of every String to see if it’s a Name

The problem

Uniplate (Mitchell/Runciman, 2007)

cStyleNames :: AST -> AST
cStyleNames = transform doName

Designed for compiler applications
Provides a wide variety of ready-made traversal functions
Works using a primitive defined in a typeclass

class Biplate outer inner where
biplate :: outer -> ([inner], [inner] -> outer)

biplate lets you operate upon the biggest inners in an outer
From this, you can build all the higher-level operations

Much faster – no runtime typing

The problem

So why not just use Uniplate?

Uniplate doesn’t support generic operations with more
than one target type

e.g. matching Processes and Expressions

This is a problem for us – we have several passes that
need to do this
Can we extend the Biplate primitive to support multiple
target types?

Yes: we’ve called it Polyplate

Polyplate

Operation sets

We need to be able to build sets of type-specific functions
(“operations”)
. . . and we need to be able to parameterise a typeclass
over the type of a set of operations
So we use a standard type-level programming trick. . .
The empty set of operations is the unit type:

type BaseOp = ()

baseOp :: BaseOp
baseOp = ()

Polyplate

Operation sets

We then add type-specific functions to the set by nesting
tuples:

type Transform t = t -> t

type ExtOp op t = (Transform t, op)

extOp :: op -> Transform t -> ExtOp op t
extOp ops f = (f , ops)

Polyplate

Operation sets

There’s a nice symmetry between the functions used to
build an operation set and its type
Here’s an operation set with type-specific functions for
Process and Expression

myOp :: BaseOp ‘ExtOp‘ Process ‘ExtOp‘ Expression
myOp = baseOp ‘extOp‘ doProcess ‘extOp‘ doExpression

(in practice the type can usually be inferred)

Polyplate

The Polyplate typeclass

class Polyplate ops tops t where
polyplate :: ops -> tops -> Bool -> t -> t

polyplate applies the type-specific functions in its operation
set to the largest subtrees of the appropriate types within a
value of type t

If no functions match, it behaves like the identity function
It takes two sets of operations:

ops to apply to the current value;
tops to apply to children of the value when recursing into it

I’ll come back to the Bool flag in a minute; for now we’ll just
pass it through

Polyplate

An example data type

We’ll use the following pair of data types for our examples:

data Outer = Foo Inner | Bar
data Inner = Baz | Quux

The constructors here aren’t really important, but. . .
Note that Outer can contain an Inner, but not vice versa

Polyplate

Polyplate instances: “hits”

When the set is not empty, and the outermost type-specific
function in the set can be applied to the value type, we
simply apply it:

instance Polyplate (Transform Inner, r) tops Inner where
polyplate (f , _) _ _ v = f v

instance Polyplate (Transform Outer, r) tops Outer where
polyplate (f , _) _ _ v = f v

Polyplate

Polyplate instances: “misses”

When the set is not empty, and the outermost type-specific
function cannot be applied to the value type, then we
recurse to try the next function in the set:

instance Polyplate r tops Inner =>
Polyplate (Transform Outer, r) tops Inner where

polyplate (_, rest) topOps b v
= polyplate rest topOps b v

The recursion in the typeclass constraint matches the
recursion in the function itself

Polyplate

Pruning

class Polyplate ops tops t where
polyplate :: ops -> tops -> Bool -> t -> t

What’s that Bool for?
It’s the descent flag
It starts off as False

If it becomes True while we’re trying to apply our functions,
then the value type t might contain one of the target types
We use this to limit our traversal to only the values that
might contain the things we’re looking for

Polyplate

Polyplate instances: “throughs”

. . . except in the case where we know that the value type
might contain values of the type that the type-specific
function is looking for – then we do the same, but we also
force the descent flag to True:

instance Polyplate r tops Inner =>
Polyplate (Transform Inner, r) tops Outer where

polyplate (_, rest) topOps b v
= polyplate rest topOps True v

Polyplate

Polyplate instances: non-trivial empty sets

When the set of operations is empty, we know we haven’t
applied any type-specific functions to the current value
We have to look at the descent flag
If it’s False, none of the types we’re looking for can be
contained inside this value; we can just return it
If it’s True, we have to apply polyplate recursively to the
children of the value

. . . setting the descent flag back to False

instance Polyplate tops tops Inner =>
Polyplate () tops Outer where

polyplate () _ False v = v
polyplate () topOps True (Foo i)
= let i ’ = polyplate topOps topOps False i

in Foo i ’
polyplate () _ True Bar = Bar

Polyplate

Polyplate instances: trivial empty sets

If the set of operations is empty and the value type has no
children, we can just return it:

instance Polyplate () tops Inner where
polyplate () _ _ v = v

Conclusions

Downsides

You need lots of instances of Polyplate – n(n − 1) where n
is the number of types you want to handle
Fortunately, we can derive them automatically

We use SYB’s runtime typing to detect which types can
contain other types, then generate instance code

You also need more typeclass constraints on functions
using these operations than with SYB
It takes a very long time to compile Polyplate code with
GHC. . .

Conclusions

In summary. . .

We’ve shown how the Uniplate approach to generics can
be extended to allow operations involving multiple types
This lets us replace SYB – which significantly speeds up
our compiler
I’ve been glossing over a lot here: ask me for the paper for
the full details

For example, all the transformations are actually
monadic. . .

Any questions?

	Introduction
	The problem
	Polyplate
	Conclusions

